3,421 research outputs found

    Thermalization of hot electrons via interfacial electron-magnon interaction

    Full text link
    Recent work on layered structures of superconductors (S) or normal metals (N) in contact with ferromagnetic insulators (FI) has shown how the properties of the previous can be strongly affected by the magnetic proximity effect due to the static FI magnetization. Here we show that such structures can also exhibit a new electron thermalization mechanism due to the coupling of electrons with the dynamic magnetization, i.e., magnons in FI. We here study the heat flow between the two systems and find that in thin films the heat conductance due to the interfacial electron-magnon collisions can dominate over the well-known electron-phonon coupling below a certain characteristic temperature that can be straightforwardly reached with present-day experiments. We also study the role of the magnon band gap and the induced spin-splitting field induced in S on the resulting heat conductance and show that heat balance experiments can reveal information about such quantities in a way quite different from typical magnon spectroscopy experiments

    Electron-phonon heat transfer in monolayer and bilayer graphene

    Full text link
    We calculate the heat transfer between electrons to acoustic and optical phonons in monolayer and bilayer graphene (MLG and BLG) within the quasiequilibrium approximation. For acoustic phonons, we show how the temperature-power laws of the electron-phonon heat current for BLG differ from those previously derived for MLG and note that the high-temperature (neutral-regime) power laws for MLG and BLG are also different, with a weaker dependence on the electronic temperature in the latter. In the general case we evaluate the heat current numerically. We suggest that a measurement of the heat current could be used for an experimental determination of the electron-acoustic phonon coupling constants, which are not accurately known. However, in a typical experiment heat dissipation by electrons at very low temperatures is dominated by diffusion, and we estimate the crossover temperature at which acoustic-phonon coupling takes over in a sample with Joule heating. At even higher temperatures optical phonons begin to dominate. We study some examples of potentially relevant types of optical modes, including in particular the intrinsic in-plane modes, and additionally the remote surface phonons of a possible dielectric substrate.Comment: 13 pages, 8 figures; moved details to appendixes, added discussion of remote phonon

    Physics of Proximity Josephson Sensor

    Full text link
    We study the proximity Josephson sensor (PJS) in both bolometric and calorimetric operation and optimize it for different temperature ranges between 25 mK and a few Kelvin. We investigate how the radiation power is absorbed in the sensor and find that the irradiated sensor is typically in a weak nonequilibrium state. We show in detail how the proximity of the superconductors affects the device response: for example via changes in electron-phonon coupling and out-of-equilibrium noise. In addition, we estimate the applicability of graphene as the absorber material.Comment: 13 pages, 11 figures, submitted to Journal of Applied Physics, v2: Addition of a new section discussing the radiation coupling to the device, several minor change

    Huge thermoelectric effects in ferromagnet-superconductor junctions in the presence of a spin-splitting field

    Get PDF
    We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin-split by a Zeeman field with a ferromagnet with a non-zero polarization. The resulting thermopower exceeds kB/ek_B/e by a large factor, and the thermoelectric figure of merit ZTZT can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias.Comment: 5 pages, 4 figure
    corecore